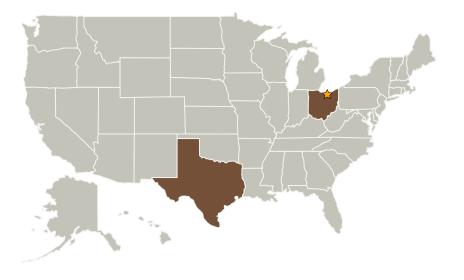
600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase I



Completed Technology Project (2006 - 2007)

Project Introduction

Over the past six years, ENTECH, Auburn, NASA, and other organizations have developed a new space photovoltaic array called the Stretched Lens Array (SLA), which offers unprecedented performance (e.g., >80 kW/cu.m. stowed power, >300 W/sq.m. areal power, and >300 W/kg specific power in the very near term) and cost-effectiveness (>75% savings in \$/W compared to planar high-efficiency arrays). SLA achieves these outstanding attributes by employing flexible Fresnel lenses for optical concentration (e.g., 8X), thereby minimizing solar cell area, mass, and cost. SLA's small cell size (85% less cell area than planar high-efficiency arrays) also allows super-insulation and super-shielding of the solar cells to enable high-voltage operation and radiation hardness in the space environment. Recent studies show that SLA offers a 3-4X advantage over competing arrays in specific power for many NASA Exploration missions. ENTECH and Auburn, with Aerojet support, propose to develop and demonstrate a special version of SLA, specifically optimized for Solar Electric Propulsion (SEP) missions. This SLA for SEP will operate at 600 V to direct-drive an Aerojet Hall-effect electric thruster. Such a combination of an ultra-light, high-voltage, radiation-hard SLA with a highspecific-impulse electric thruster will have widespread applicability to many NASA, DOD, and commercial missions.

Primary U.S. Work Locations and Key Partners

600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase I

Completed Technology Project (2006 - 2007)

Organizations Performing Work	Role	Туре	Location
☆Glenn Research Center(GRC)	Lead Organization	NASA Center	Cleveland, Ohio
ENTECH, Inc.	Supporting Organization	Industry	Keller, Texas

Primary U.S. Work Locations	
Ohio	Texas

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Mark O'neill

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic

